18+
  • Город
  • Наука и образование
  • ТОП 50 2020
Наука и образование

Поделиться:

Как физик Алексей Кавокин помог России обойти Google в квантовой гонке

Лауреат премии «ТОП 50 Самые знаменитые люди Петербурга» 2020, петербургский физик с международным именем, работает сразу в СПбГУ и в британском университете Саутгемптона. Недавно получил одну из самых престижных наград в мире Quantum Devices Award, совершив открытие, которое позволит сделать массовое производство квантовых компьютеров не сюжетом фантастических романов, а реальностью. В свободное от квантовых открытий время Кавокин, отец четверых детей, пишет и с успехом издает серию детских книг о приключениях кота Саладина.

Карантин застал Алексея в Англии - физик сфотографирован онлайн в своем доме в Винчестере.

Карантин застал Алексея в Англии - физик сфотографирован онлайн в своем доме в Винчестере.

Вам принадлежит открытие, которое может приблизить производство квантовых компьютеров нового поколения. Благодаря ему вы получили премию Quantum Devices Award, одну из самых престижных в физике. В чем суть?

Чтобы понять суть работы, которой мы занимались вместе с коллегами из университета Саутгемптона, надо мысленно вернуться в 1924 год. Тогда Альберт Эйнштейн прочел серию работ индийского физика Шатьендраната Бозе, который установил, что частицы делятся на две категории: бозоны (выживают вместе в одном состоянии) и фермионы (не выживают). Эйнштейн вывел, что из бозонов можно получить конденсат, который позже назовут бозеэйнштейновским. Этот конденсат — что-то вроде автомагистрали, на которой машины едут с одинаковой скоростью, не образуя заторов. Гораздо позже, в 1995 году, американские физики пришли к выводу, что это открытие позволяет объединить атомы рубидия в один гигантский атом. При помощи этого явления можно создавать квантовые транзисторы, которые лягут в основу квантовых компьютеров. 


Google нужен газ гелий-3, который стоит огромные деньги и которого очень мало на Земле.

В чем их отличие от обычных компьютеров, даже самых мощных? Обычный, чтобы решить какую-то задачу, перебирает варианты, а квантовый обладает всеми возможными вариантами решения этой задачи сразу. То есть классический компьютер может разгадывать какой-то шифр день, месяц, год, а квантовый сделает это по щелчку, за секунду. Более того, если для классического суперкомпьютера нужны миллиарды транзисторов, то для квантового хватает небольшого числа. Например квантовый компьютер «Сикомор» компании Google работает всего на 54 таких транзисторах. Но тут есть проблема — работать такие транзисторы могут только при сверхнизких температурах, около абсолютного нуля, -273С. Google для этого нужен газ гелий-3, который стоит огромные деньги, его очень мало на Земле, ведется даже разговор о том, чтобы привозить его с Луны.


Наше открытие может стать основой для более дешевых и простых в изготовлении квантовых компьютеров. А это отличный шанс оставить американские корпорации далеко позади. 

Что сделали мы? В 2001 году мне и моим коллегам пришла простая, казалось бы, мысль. Эйнштейн предсказал, что критическая температура для создания того самого конденсата обратно пропорциональна массе частицы. Так почему бы не найти более легкие, чем атом рубидия, частицы?  Мы стали работать с поляритонами, квантами жидкого света, которые в миллиард раз легче атомов рубидия. И оказалось, что они образуют бозе-эйнштейновский конденсат при комнатной температуре +26-27С! Никакого гелия-3 и миллионных затрат! Это удивительное открытие, позволившее перенести экзотический эффект физики низких температур в повседневную жизнь. В Англии мы провели опыты, они оказались удачными, и на их основе мы сделали лазер, спонтанно излучающий свет, состоящий из одинаковых фотонов. Наше открытие имеет практическое применение и может стать основой для более дешевых и простых в изготовлении квантовых компьютеров. А это отличный шанс оставить американские корпорации далеко позади. 

Квантовый компьютер. Фото: Shutterstock

Квантовый компьютер. Фото: Shutterstock

В чем практическая суть квантовых компьютеров, как именно они изменят мир?

Квантовый компьютер называют атомной бомбой XXI века, потому что он открывает бесконечные возможности для хакеров, для кибератак — разгадать любой шифр не будет проблемой! Но польза от него в разы больше, чем вред. Такие компьютеры дадут мощнейший толчок науке – по оценкам многих экспертов, квантовые вычисления могут помочь создать вакцины от многих болезней: от рака до коронавируса, потому что разработка вакцины — не что иное, как перебор вариантов построения молекул. Это та задача, с которой квантовый компьютер справляется лучше всего

Это наверняка понимают и правительства, и военные, и крупные мировые корпорации.

Понимают очень хорошо, в мире идет настоящая квантовая гонка. Журнал Nature в 2019 году вообще провозгласил начало квантовой эпохи. Известно о программе «Горизонт 2020», финансируемой Евросоюзом, аналогичных программах Великобритании, Японии, США. Правительства выделяют на развитие квантовой физики миллиарды долларов еженедельно, вкладывается в эту ветвь науки и Россия. Я уже не говорю о Китае, где на квантовые разработки дают деньги и коммерческие гиганты вроде Alibaba, и правительство.


Мы уже запатентовали лазер в России, и патентуем его в Европе.

Предментый инвестиционный интерес к вашей разработке есть?

Безусловно интерес есть, и мы уже запатентовали лазер в России, и патентуем его в Европе. Но надо понимать — мы в самом начале пути, до непосредственного создания квантового компьютера еще нужно время. Пока что наиболее конкретный интерес к нашему открытию демонстрирует Китай — там под моим руководством построили целый научно-исследовательский центр в университете Уэстлейк (Ханчжоу), в том числе для работы над квантовыми компьютерами.

Обложка книги Алексея Кавокина «Акронис и квантовый компьютер» (Фото: издательство «Альпина Паблишер»)

Обложка книги Алексея Кавокина «Акронис и квантовый компьютер» (Фото: издательство «Альпина Паблишер»)

В 2011 году вы, будучи профессором Университета Саутгемптона, приняли предложение возглавить лабораторию оптики спина в СПбГУ. Для вас было важно сделать вклад в российскую науку?

Конечно, ведь я учился в России, защитил кандидатскую диссертацию в Физико-техническом институте имени Иоффе. Мой отъезд в Европу не был эмиграцией — просто в 1997 году я получил предложение о работе из Университета Блеза Паскаля во французском Клермон-Ферране и принял его, а в 2005 году возглавил кафедру нанофизики и фотоники в университете Саутгемптона. При всем этом я всегда поддерживал связь с коллегами, считал и считаю, что российская школа теоретической физики и экспериментальной физики твердого тела одна из лучших в мире.

Но в 1990-е зарплаты в России были невероятно низкими, и талантливые ученые разбегались по миру. К счастью, в конце 2000-х — начале 2010-х в России появилась государственная программа мегагрантов, цель которой — возвращение в страну уехавших на Запад российских ученых и привлечение иностранных специалистов. Один из таких грантов получил СПбГУ, пригласил меня, и я с радостью принял это приглашение. В России я работаю 3-4 месяца в году. Теперь наша петербургская лаборатория — одна из ведущих в российской физике твердого тела.


К сожалению, петербургская школа сдала в 1990-е — как раз потому что многие ученые уехали за границу. 

Существует ли петербургская школа физики и насколько она сильна?

Изначально она была очень сильной. В Ленинграде работал Яков Френкель, автор первого курса теоретической физики СССР. Когда в конце 1980-х в Физтех им. Иоффе пришел я, там работал, например, Борис Шкловский, один из ведущих ученых мира (сейчас он работает в США) в области исследования полупроводников. До сих пор трудится Евгений Ивченко, заложивший несколько новых направлений в фотонике. К сожалению, петербургская школа сдала в 1990-е — как раз потому что многие ученые уехали за границу. Но замечательные молодые ученые есть. Например, Михаил Глазов из того же Физтеха, доктор наук, член-корреспондент РАН наук в свои 37 лет, физик, работающий с поляритонами.

Алексей Кавокин читает доклад в СПбГУ (Фото: пресс-служба СПбГУ)

Алексей Кавокин читает доклад в СПбГУ (Фото: пресс-служба СПбГУ)

И тут мы приходим к вопросу о недостатках российской науки.

Российская наука прекрасна и сильна, в последние десять лет государство ее щедро финансирует, но есть несколько серьезных проблем, которые ее тормозят. Первая — она варится в собственном соку. На профессорскую позицию в той же Англии проходит открытый конкурс, то есть, на нее претендуют талантливые ученые со всего мира. В России новость о вакансии может даже не выйти за пределы университета.

Вторая. Хоть, как я уже сказал, государство финансирует науку, зарплаты все равно ниже тех, что предлагаются на Западе. Исключение — Сколковский институт науки и технологий (СколТех), но это молодой институт, возникший в 2011 году, ему еще надо приобрести устойчивую международную репутацию.


В Китае я получил $15 млн на создание лаборатории поляритоники — в России ученый не получает ничего, даже стул и компьютер нужно покупать самому.

Третья проблема — не суммы, а сама структура финансирования. В большинстве других стран ученый вместе с позицией получает сразу же определенный бюджет на исследования и обустройство лаборатории. Например, в Китае я получил 15 миллионов долларов на создание лаборатории поляритоники. В России же ученый не получает ничего, даже стул и компьютер нужно покупать либо за свои средства, либо за грант, заявку на который еще надо подать. В общем, исследователь вместо науки тратит время на поиск денег, и тут приходит проблема номер четыре — бюрократия. Надо писать кипы отчетов о покупке каждого дырокола только для того, чтобы чиновник поставил галочку. Но ведь результат нашей работы — публикации в научных журналах, а никак не отчеты!

Поляритонный лазер. Фото: Pixabay

Поляритонный лазер. Фото: Pixabay

Вы работаете в четырех странах (помимо Англии, России и Китая Алексей Кавокин работает в Италии, он сооснователь Средиземноморского института фундаментальной физики. — Прим.ред.), знаете достоинства и недостатки науки в каждой из них. Как по-вашему должен выглядеть идеальный институт?

Тот, в котором ученый не должен заниматься бюрократией, вся финансовая и организационная работа отдана профессионалам, а ученым доверяют. У обывателя может появиться сомнение — как так, дать профессорам денег и не контролировать, они же все разворуют! Это неверный подход — нужно доверять талантливым людям, а не видеть в каждом потенциального мошенника. Мне удалось создать лабораторию близкую к идеальной в Китае (там есть кредит доверия и невмешательство руководства), но там есть особенности, которые все-таки несколько осложняют работу. Как минимум, мешает то, что в Китае заблокировано огромное количество мировых интернет-ресурсов начиная с Google.


Среди моих коллег-физиков подавляющее большинство не уступает по уровню начитанности и культуры гуманитариям.

Помимо физики вы пишете детские книги — историческая серия о приключениях кота Саладина вышла еще в нулевые, сейчас в издательстве Alpina Book выходят повести о приключениях Акронис, школьницы-детектива. Как вы к этому пришли? Знаменитое противопоставление «гуманитарий-технарь» неактуально?

Когда я начинал работать в Клермон-Ферране, жена и единственный на тот момент сын (у Алексея сейчас четверо детей. — Прим. ред.) жили в другой стране. Интернета в нынешнем понимании еще не было, поэтому я посылал ребенку письма обычной почтой. Тогда и придумал в каждом таком письме рассказывать ему сказку про кота Саладина, который становится участником или свидетелем каких-то исторических событий, ведь история — наука, которая всегда была у меня на втором месте после физики. Тогда и увлекся писательством, но оно и по сей день остается хобби — книжки печатаются, переводятся на другие языки, но я не зарабатываю на них ни рубля, пишу их в свободное время.

Есть люди разного склада ума, но среди моих коллег-физиков подавляющее большинство не уступает по уровню начитанности и культуры гуманитариям. Это так, потому что есть мощная культурная база — традиция технической интеллигенции и на Западе, и в России. Технический склад ума не мешает гармоничному развитию, в этом я уверен. Мое увлечение литературой очень помогает мне для написания научных статей, а моя работа дает отличную базу для книг. Например, последняя книга про Акронис, в которой она разоблачает хакеров, называется «Акронис и квантовый компьютер». Вот и пригодилась последняя разработка не только в рамках физики!

Текст: Игорь Топорков

Фото: Есения Арасланова

Стиль: Мзия Гвидиани

«Собака.ru»

благодарит за поддержку партнера премии 

«ТОП 50 Самые знаменитые люди Петербурга 2020»


ДЛТ

старейший универмаг Петербурга и главный department store города

Следите за нашими новостями в Telegram
Теги:
ТОП 50 2020
Материал из номера:
Июнь
Люди:
Алексей Кавокин

Комментарии (0)